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ABSTRACT. A predator-prey model formerly proposed by A. Bazykin et al. [Bifurcation
diagrams of planar dynamical systems (1985)] is analyzed in the case when two of the
four parameters are kept fixed. Dynamics and bifurcation results are deduced by using
the methods developed by D. K. Arrowsmith and C. M. Place [Ordinary differential equa-
tions (1982)], S.-N. Chow et al. [Normal forms and bifurcation of planar fields (1994)],
Y. A. Kuznetsov [Elements of applied bifurcation theory (1998)], and A. Georgescu [Dy-
namic bifurcation diagrams for some models in economics and biology (2004)]. The global
dynamic bifurcation diagram is constructed and graphically represented. The biological in-
terpretation is presented, too.

1. Introduction

This paper deals with a particular family of planar vector fields which models the dy-
namics of two populations. Predator-prey models govern many phenomena in popula-
tion dynamics, immunology, medicine etc. We assume that there are only two competing
species: one species (predator) feeds on another species (prey), which in turn feeds on
other things. The model is a variation of the Lotka-Volterra system, a particular case of the
Bazykin model, [1]

(1)
{

ẋ = x(1 + αx− εx− y − αεx2),
ẏ = y(−1− αx + x),

where x and y represent the population numbers of the prey and the predator, respectively,
ε is the prey competition rate and α determines the saturation of the predator. The initial
Bazykin model is [2]

(2)






ẋ = x− xy

1 + αx
− εx2,

ẏ = −γy +
xy

1 + αx
− δy2,

where x and y represent the population numbers of the prey and the predator, respectively,
and α, ε, γ and δ are nonnegative parameters describing the behaviour of isolated popula-
tions and their interaction (namely α determines saturation of predator, ε, δ represent the
prey and predator competition rates, and γ represents the predator natural mortality rate).
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The presence of the four parameters is the source of a very rich dynamics generated by
(2) and of its qualitative changes as the vector parameter (α, ε, γ, δ) crosses some mani-
folds in the parameter space. These changes correspond to qualitative modification of the
populations behaviour and to topological changes of the phase portraits of the associated
dynamical system and are called the dynamical bifurcations. The geometric representation
of all possible bifurcations are given by the global dynamic bifurcation diagram consisting
of the parameter portrait (formed by the quoted manifolds) and the corresponding phase
portraits.

The model (2) was studied by Bazykin in 1985 [1] and, so, a lot of bifurcation results
were obtained. In a series of papers we treat the bifurcation from a new perspective [3].
So, for example, in [4] it is numerically treated the general case with four parameters for
different values of the parameters, with the CONTENT program. Then it is taken β = 0.01
and γ = 1 and is studied the parametric portrait in the (α, δ) plane. There are found Hopf,
Bogdanov-Takens, cusp bifurcation points. In [2] it is considered the case ε << 1 and
γ = 1. It is studied the parametric portrait in the (α, δ) plane and there are founded fold,
saddle, saddle-node, Hopf, Bautin, Bogdanov-Takens bifurcation points. In 1974 Bazykin
proposed the more complex model

(3)






ẋ = xa− bxy

1 + αx
− εx2,

ẏ = −cy +
dxy

1 + αx
,

where a, b, c, d, α, ε are positive parameters. In [5] a numerical approach (a = 0.6, b =
0.3, c = 0.4, d = 0.5) is carried out and a study in the (ε, α) plane is made by means of
the XPPAUT program. The Hopf, transcritical and saddle bifurcation points are found.

Because in [2] there are four parameters, the study of the model is very complicated and
not yet completely made. So, we make a section in the parametric space (a limit situation),
keeping fixed two parameters (namely γ = 1 [2] and, for simplicity, δ = 0). Our aim is to
study this limit case, and to determine the possible situations which can appear. All of them
are studied from the mathematical point of view. A genuine biological interpretation is not
appropriate because this case is not admissible. However, a lot of phenomena occuring
in biologically admissible cases are consequences of the mathematical phenomena (and
especially bifurcations) associated with limit cases. This motivate our study. We present
such a limit case which proves to be very rich in bifurcation phenomena.

For the beginning, we start with the study of the equilibrium points. We present here
the proof only for a nonhyperbolic equilibrium point (namely the saddle-node), for the
others (namely the Hopf singularities), the proof is presented in other paper [6]. Then we
represent the global dynamic bifurcation diagram used the WINPP program. Finally, we try
to give a biological interpretation, mostly based on our (namely mathematical) viewpoint.

2. The Bazykin predator-prey model

We deal with a particular case of the model consisting of a Cauchy problem x(0) =
x0, y(0) = y0, for the system of ordinary differential equations (sode) (2).



SOME RESULTS ON THE DYNAMICS GENERATED BY THE BAZYKIN MODEL 3

In this paper we study only the case γ = 1, δ = 0, when (2) becomes

(4)






ẋ = x− xy

1 + αx
− εx2,

ẏ = −y +
xy

1 + αx
,

or, equivalently,

(5)
{

ẋ(1 + αx) = x(1 + αx)− xy − εx2(1 + αx),
ẏ(1 + αx) = −y(1 + αx) + xy.

Introducing the new time τ through the relation dt = (1 + αx)dτ , (5) becomes

(6)
{

ẋ = x(1 + αx− εx− y − αεx2),
ẏ = y(−1− αx + x),

where the dot over quantities stands for the differentiation with respect to τ . This is the
sode we are concerned with herein.

Due to physical reasons, the phase space must be the first quadrant (without axes of
coordinates). However, as we already said, for mathematical (namely bifurcation) reasons
we consider, in addition, the origin, the half-axes and the other quadrants.

3. The equilibrium points

By convention, we say that an equilibrium exists if its coordinates are finite and positive.
Therefore, this is a biological, not a mathematical existence.
Case α = ε = 0. In this case (6) takes the form of the classical Lotka-Volterra model

(7)
{

ẋ = x(1− y),
ẏ = y(−1 + x).

The equilibrium points are the saddle O(0, 0) and the center A(1, 1).
We recall that the attractivity properties of an equilibrium point (x∗, y∗) is determined

by the real part of the eigenvalues of the matrix defining the linearized sode about this
point.
Case α = 0, ε != 0. In this case (6) becomes

(8)
{

ẋ = x(1− εx− y),
ẏ = y(−1 + x).

and has the equilibrium points O(0, 0), E(1/ε, 0) and A(1, 1−ε). The point O is a saddle;
E is a saddle for 1− ε > 0, a saddle-node for ε = 1 and an attractive node for 1− ε < 0.
The point A is an attractive focus for ε ∈ (0, 2

√
2 − 2), a sink for ε = 2

√
2 − 2, and an

attractive node for ε ∈ (2
√

2 − 2, 1). For ε = 1, at C2, the point A collides with E and it
becomes a saddle-node. For ε > 1, A is a saddle.
Case α != 0, ε = 0. In this case (6) becomes

(9)
{

ẋ = x(1 + αx− y),
ẏ = y(−1− αx + x).

The equilibrium points are O(0, 0), B(−1/α, 0) and A((1− α)−1, (1− α)−1) for α $= 1.
The point O is a saddle, B is an attractive node for α $= 1 and a degenerated attractive
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node for α = 1, while A is a repulsive focus if α ∈ (0, 2
√

2−2), a source if α = 2
√

2−2,
a repulsive node if α ∈ (2

√
2 − 2, 1), a saddle if α > 1, it does not exist mathematically

for α = 1,while for α > 1 it exists mathematically, but not biologically. Hence, according
to our convention, A disappears at C3(1, 0), for α = 1. This is why, at α = 1, A is not a
double zero equilibrium as expected. As a consequence, at C3 the curves HR, HC and S
are not tangent (these curves are defined in Section 4).
Case α != 0, ε != 0. The system (6) can have the following equilibrium points: O(0, 0),
E (1/ε, 0), B(−1/α, 0) and A((1 − α)−1, (1 − α − ε)(1 − α)−2) for 1 − α $= 0. If
1 − α = 0 the point A disappears. The number and the multiplicity of the equilibrium
points depend on the values of the parameters α and ε.

The attractivity of an equilibrium point (x∗, y∗) of (6) is determined by the eigenvalues
of the matrix

(10) A =
(

1 + 2(α− ε)x− y − 3αεx2 −x
(1− α)y −1 + (1− α)x

)∣∣∣∣
(x∗,y∗)

.

For the equilibrium point O, A becomes A =
(

1 0
0 −1

)
, which has the eigenvalues

λ1 = 1 > 0, λ2 = −1 < 0. Thus O is a saddle.
For the equilibrium point E, the matrix A takes the form

A =
(

(−ε− α)/ε −1/ε
0 (1− α− ε)/ε

)
, and has the eigenvalues λ1 = −1 < 0, λ2 =

(1−α−ε)/ε. Therefore, if α $= 1 and ε $= 1, E is a saddle for 1−α−ε > 0, a saddle-node
for 1− α − ε = 0 and an attractive node for 1− α − ε < 0. For α = 1 E is an attractive
node.

For the equilibrium point B, the matrix A takes the form

A =
(

(−α− ε)/α 1/α
0 −1/α

)
, which has the eigenvalues λ1 = (−α − ε)/α < 0

and λ2 = −1/α < 0. Thus B is an attractive node.
For the equilibrium point A, the matrix A takes the form

(11) A =
(

(−α2 + α− αε− ε)/(1− α)2 −1/(1− α)
(1− α− ε)/(1− α) 0

)
.

The eigenvalues of (11) are the roots of the characteristic equation

(12) λ2 − tr A λ + detA = 0,

with detA = (1 − α − ε)/(1 − α)2, tr A = (−α2 + α − αε − ε)/(1 − α)2, and
∆ = ((α2 +2α+1)ε2 +(2α3 +4α2 +4−10α)ε+α4 +2α3−11α2 +12α−4)/(α−1)4.
Therefore, if 1− α− ε > 0 A is an attractive (repulsive) focus or an attractive (repulsive)
node, depending on the sign of trA and ∆ , a saddle if 1− α− ε < 0 and a saddle-node if
1− α− ε = 0. In this last case the point A coincides with the point E.

Owing to the Hartman-Grobman theorem, we are interested only in nonhyperbolic equi-
libria: the center A(1, 1) for α = ε = 0; the saddle-node A(1/ε, 0) for 0 ≤ α < 1, ε =
1−α and the Hopf singularity A((1−α)−1, (1−α−ε)(1−α)−2) for−α2+α−αε−ε = 0.
Since the center A(1, 1) was studied very much for the Lotka-Volterra models, we have to
investigate only the other two singularities. In order to see whether A is a degenerated
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or a nondegenerated singularity we have to derive the normal form of (6) at A [7]. We
found that the both singularities are nondegenerated. In the following we will study only
the saddle-node singularity, while the Hopf singularity will be study elsewhere.

Remark 1. The axes of coordinates are separatrices of dynamics.

4. The normal form for the saddle-node

Consider the case 0 ≤ α < 1, 1− α− ε = 0, ε $= 0, when the equilibrium A coincides
with E(1/ε, 0), therefore E is a double equilibrium point. First, we translate the point E
at the origin with the aid of the change u1 = x− 1/ε, u2 = y. Let u = (u1, u2)T . Then,
in u, (6) reads

(13)
{

u̇1ε = −u1 − u2 + ε(ε− 2)u2
1 − εu1u2 − ε2(1− ε)u3

1,
u̇2ε = ε2u1u2.

Introducing a new time ν = τ/ε, and redenoting · ≡ d

dν
, (13) becomes

(14)
{

u̇1 = −u1 − u2 + ε(ε− 2)u2
1 − εu1u2 − ε2(1− ε)u3

1,
u̇2 = ε2u1u2.

The eigenvalues of the matrix defining the linear terms in (14) are
λ1 = −1, λ2 = 0 and the corresponding eigenvectors read uλ1 = (1, 0)T and uλ2 =

(1,−1)T . Thus, with the change of the coordinates
(

u1

u2

)
=

(
1 1
0 −1

) (
v1

v2

)
,

(13) asumes the form

(15)
{

v̇1 = −v1 + ε(ε− 2)v2
1 + ε(ε− 3)v1v2 − εv2

2 + O(v3),
v̇2 = ε2v1v2 + ε2v2

2 ,

involving a diagonal matrix of the linear terms. In order to reduce the second-order nonres-
onant terms in (14) we determine the transformation v = n + h(n), where v = (v1, v2)T

and n = (n1, n2)T , suggested by the Table 1

m1 m2 Xm,1 Xm,2 Λm,1 Λm,2 hm,1 hm,2

2 0 ε(ε− 2) 0 -1 -2 −ε(ε− 2) 0
1 1 ε(ε− 3) ε2 0 -1 - −ε2

0 2 −ε ε2 1 0 −ε -

Table 1.
where Λm,1, Λm,2 are the eigenvalues of the associated Lie operator, and
Xm is the second-order vector polynomial in (14). We find the transformation

{
v1 = n1 − ε(ε− 2)n2

1 − εn2
2,

v2 = n2 − ε2n1n2,

carrying (14) into

(16)
{

ṅ1 = −n1 + ε(ε− 3)n1n2 + O(n3),
ṅ2 = ε2n2

2 + O(n3).
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This is the normal form of (13). In [7] it is shown that the equilibrium point E(1/ε, 0) of
the dynamical system generated by a sode like (16) is a nondegenerated saddle-node.

5. The global dynamic bifurcation diagram

The discussion in Section 3 shows that in the parameter space (α, ε) the strata are deter-
mined by: the curve S (zone 17), corresponding to saddle-nodes; the curve HC (zone13),
corresponding to linear centers and, so, possibly to Hopf bifurcation points, the curve
D (zones 10 and 15), corresponding to double eigenvalues, and the points C1(0, 2

√
2 −

2), C2(0, 1), C3(1, 0), C4(2
√

2−2, 0). Recall that the curves H (defined by trA = 0, i.e.
the sum of the eigenvalues is null) and S are common to all equilibria. In addition, all HC
(one curve HC for one equilibrium) are situated on H . In our case there are twenty two
regions corresponding to topologically equivalent dynamical systems. The quoted curves
determine the parametric portrait (Fig.1), therefore, this portrait consists of the union of
S, H and D for all equilibria.

Let x0 be an equilibrium and denote by HR , the subset of H corresponding to real
eigenvalues for x0, by HC the subset of H corresponding to purely imaginary eigenvalues
for x0, and let Q be the intersection of H and S. Then, if x0 exists for Q, the manifolds
S and H are tangent at Q. Therefore H = HR ∪HC for every equilibria, even if HR and
HC are not the same for any two equilibria. If x0 does not exist for Q, then instead of Q
we write C3 and remark that at C3 the curves H and S intersect, but not tangently.

The equations of the curves S, H, HC,HR and D for the equilibrium point E are
defined by the conditions trA $= 0, detA = 0; trA = 0; trA = 0, tr2A − 4 detA <
0; trA = 0, tr2A− 4 detA > 0; and tr2A− 4 detA = 0 respectively, where A is given
by (11). Thus, we obtain S = {(α, ε)| 1 − α − ε = 0}. From Section 2 we have that
H = {(α, ε)| − α2 + α− αε− ε = 0}, C3 = H ∩ S, HR = ∅ and HC = H\C3. Thus,
in our case, for α > 0 and ε > 0, we have HC = {(α, ε)| − α2 + α − αε − ε = 0}. Of
course, for the biologically nonrealistic case ε < 0, we have HR $= ∅ just as in the general
case.

In Fig. 2 we represent the phase portraits corresponding to each stratum of the para-
metric portrait. They show that, in spite of their unrealistic significance for the population
dynamics, the equilibria O, E, B and A for 1 − α − ε < 0 heavily contribute to the
changes in the phase portraits and, so, to the dynamic bifurcation diagram (which consists
of Figs. 1 and 2).

It can be described as follows: the equilibrium O is always a saddle and it exists for
every value of the parameters α and ε; the equilibrium B is always an attractive node
and it exists for α $= 0, ε ∈ R, but it is not important for us, because it has a negative
coordinate; the equilibrium E exists for α $= 0 and ε ∈ R. It is a saddle for 1 − α − ε ∈
(0, 1), for 1 − α − ε = 1 it collides with A and becomes a saddle-node, and then it is an
attractive node for 1 − α − ε > 1. The equilibrium A exists for α $= 1 and ε ∈ R. For
α = ε = 0 the equilibrium A corresponds to a linear center. On Oε it is an attractive focus
for ε ∈ (0, 2

√
2 − 2), a sink for ε = 2

√
2 − 2, an attractive node for ε ∈ (2

√
2 − 2, 1),

for ε = 1 it collides with E and becomes a saddle-node, and, then, for ε > 1 it becomes a
saddle. On Oα the equilibrium A is a repulsive focus for α ∈ (0, 2

√
2 − 2), a source for

α = 2
√

2− 2, a repulsive node for α ∈ (2
√

2− 2, 1), it disappears for α = 1 and appears
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again for α > 1 where it is a saddle, but it has no biological importance because one of its
coordinates becomes negative.

For α $= 0, ε $= 0, let us begin our discussion from the zone 9. Thus, in zone 9, the
equilibrium A is a repulsive node; on the curve D (zone 10) it becomes a source and than,
in zone 12 it is a repulsive focus. Somewhere in zone 12, it appears a limit cycle, which
disappears on the curve H (zone 13) where A becomes a Hopf singularity, and then, in
zone 14 it becomes an attractive focus. On the curve D (zone 15) the equilibrium A is a
sink, then in zone 16 it becomes an attractive node and, then on the curve S (zone 17) it
collides with the point E and becomes a nondegenerated saddle-node. Beyond the curve S,
the equilibrium A becomes a saddle (but with the negative components), which disappears
for α = 1 (zone 5) and appears again for α > 1 (zone 6). In Fig. 2 we present two portraits
for zone 12 (one is global and one is local around the equilibrium A).

FIGURE 1. The parametric portrait for (6), where n stays for node, s for
saddle, f for focus, c for center, s-n for saddle-node, si for sink, so for
source, H for Hopf singularity, a for attractive and r for repulsive.

6. Biological interpretation

As we said before, for mathematical reasons we studied the population dynamics for the
entire parameter plane. However, for biology purposes we give the biological interpretation
only for the fist quadrant. As a consequence, as we already established by convention, if
x0 and/or y0 are negative we say that the corresponding equilibrium x0 does not exist.

Analyzing the portraits in Fig. 2 we can conclude that, if one or both initial populations
do not exist, they will not exist for ever. In fact, this is a consequence of the fact that
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FIGURE 2. Phase portrait for various strata in Fig.1.
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the axes of coordinates in the phase plane are separatrix. If the initial population are at
any equilibrium point, then the populations remain constant at any subsequent time. If the
initial populations are situated on a limit cycle, then the time evolution of populations will
be cyclical (periodic). For all other initial values the subsequent populations vary in various
manners, depending on the values of the parameters α and ε. The paths described by these
initial values are phase space trajectories corresponding to transient regimes between some
equilibrium state or/and periodic regime. In the following we are concerned only with the
transient regimes.

Thus, for zone 0 the subsequent populations initially close to A vary periodically in
time; for zones 1, 13 and 14 the subsequent populations are oscillatory but not peri-
odic ( first both populations increase, then only y increases and x decreases, then only
x increases and y decreases with the amplitudes smaller and smaller, and again both
populations increase and so on) until they reach the equilibrium point A(1, 1 − ε) or
A((1−α)−1, (1−α− ε)(1−α)−2). In zone 1 the increase (decrease) of the populations
is faster than in zone 14, while in zone 13 the increase (decrease) of the populations is very
slow. For zones C1, 2, 15, 16, the subsequent populations present very small oscillations
until they come to the equilibrium point A(1, 1−ε) or A((1−α)−1, (1−α−ε)(1−α)−2).
For zone 12 the subsequent populations oscillate (either periodically or not). For zones C2,
3, 4, 5, 6, 17, the subsequent populations are slowly oscillating until they come to the equi-
librium point E(1/ε, 0), i.e. y becomes extinct. In all other cases the equilibrium points
are unstable, namely one or both populations go to infinity.

Finally, we can conclude that the prey x(t) flourish in the absence of the predator. The-
oretically, the predator can destroy all the prey so that the latter becomes extinct. However,
if this happens the predator y(t) will also become extinct since, as we assume, it depends
on the prey for its existence. In order for the predation to take place there must be a fight
between a predator and a prey. In addition, our parametric portrait shows precisely where
all these phenomena occur.
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